3.44 \(\int \frac {(a+b x^2) \sqrt {c+d x^2}}{(e+f x^2)^{3/2}} \, dx\)

Optimal. Leaf size=258 \[ -\frac {\sqrt {c+d x^2} (2 b e-a f) E\left (\tan ^{-1}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{\sqrt {e} f^{3/2} \sqrt {e+f x^2} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}}-\frac {x \sqrt {c+d x^2} (b e-a f)}{e f \sqrt {e+f x^2}}+\frac {x \sqrt {c+d x^2} (2 b e-a f)}{e f \sqrt {e+f x^2}}+\frac {b \sqrt {e} \sqrt {c+d x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{f^{3/2} \sqrt {e+f x^2} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}} \]

[Out]

-(-a*f+b*e)*x*(d*x^2+c)^(1/2)/e/f/(f*x^2+e)^(1/2)+(-a*f+2*b*e)*x*(d*x^2+c)^(1/2)/e/f/(f*x^2+e)^(1/2)-(-a*f+2*b
*e)*(1/(1+f*x^2/e))^(1/2)*(1+f*x^2/e)^(1/2)*EllipticE(x*f^(1/2)/e^(1/2)/(1+f*x^2/e)^(1/2),(1-d*e/c/f)^(1/2))*(
d*x^2+c)^(1/2)/f^(3/2)/e^(1/2)/(e*(d*x^2+c)/c/(f*x^2+e))^(1/2)/(f*x^2+e)^(1/2)+b*(1/(1+f*x^2/e))^(1/2)*(1+f*x^
2/e)^(1/2)*EllipticF(x*f^(1/2)/e^(1/2)/(1+f*x^2/e)^(1/2),(1-d*e/c/f)^(1/2))*e^(1/2)*(d*x^2+c)^(1/2)/f^(3/2)/(e
*(d*x^2+c)/c/(f*x^2+e))^(1/2)/(f*x^2+e)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.16, antiderivative size = 258, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {526, 531, 418, 492, 411} \[ -\frac {\sqrt {c+d x^2} (2 b e-a f) E\left (\tan ^{-1}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{\sqrt {e} f^{3/2} \sqrt {e+f x^2} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}}-\frac {x \sqrt {c+d x^2} (b e-a f)}{e f \sqrt {e+f x^2}}+\frac {x \sqrt {c+d x^2} (2 b e-a f)}{e f \sqrt {e+f x^2}}+\frac {b \sqrt {e} \sqrt {c+d x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{f^{3/2} \sqrt {e+f x^2} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}}} \]

Antiderivative was successfully verified.

[In]

Int[((a + b*x^2)*Sqrt[c + d*x^2])/(e + f*x^2)^(3/2),x]

[Out]

-(((b*e - a*f)*x*Sqrt[c + d*x^2])/(e*f*Sqrt[e + f*x^2])) + ((2*b*e - a*f)*x*Sqrt[c + d*x^2])/(e*f*Sqrt[e + f*x
^2]) - ((2*b*e - a*f)*Sqrt[c + d*x^2]*EllipticE[ArcTan[(Sqrt[f]*x)/Sqrt[e]], 1 - (d*e)/(c*f)])/(Sqrt[e]*f^(3/2
)*Sqrt[(e*(c + d*x^2))/(c*(e + f*x^2))]*Sqrt[e + f*x^2]) + (b*Sqrt[e]*Sqrt[c + d*x^2]*EllipticF[ArcTan[(Sqrt[f
]*x)/Sqrt[e]], 1 - (d*e)/(c*f)])/(f^(3/2)*Sqrt[(e*(c + d*x^2))/(c*(e + f*x^2))]*Sqrt[e + f*x^2])

Rule 411

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticE[ArcTan
[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(c*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 418

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]*EllipticF[ArcT
an[Rt[d/c, 2]*x], 1 - (b*c)/(a*d)])/(a*Rt[d/c, 2]*Sqrt[c + d*x^2]*Sqrt[(c*(a + b*x^2))/(a*(c + d*x^2))]), x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 492

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(x*Sqrt[a + b*x^2])/(b*Sqr
t[c + d*x^2]), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 526

Int[((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> -Simp[
((b*e - a*f)*x*(a + b*x^n)^(p + 1)*(c + d*x^n)^q)/(a*b*n*(p + 1)), x] + Dist[1/(a*b*n*(p + 1)), Int[(a + b*x^n
)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(b*e*n*(p + 1) + b*e - a*f) + d*(b*e*n*(p + 1) + (b*e - a*f)*(n*q + 1))*x
^n, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && LtQ[p, -1] && GtQ[q, 0]

Rule 531

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rubi steps

\begin {align*} \int \frac {\left (a+b x^2\right ) \sqrt {c+d x^2}}{\left (e+f x^2\right )^{3/2}} \, dx &=-\frac {(b e-a f) x \sqrt {c+d x^2}}{e f \sqrt {e+f x^2}}-\frac {\int \frac {-b c e-d (2 b e-a f) x^2}{\sqrt {c+d x^2} \sqrt {e+f x^2}} \, dx}{e f}\\ &=-\frac {(b e-a f) x \sqrt {c+d x^2}}{e f \sqrt {e+f x^2}}+\frac {(b c) \int \frac {1}{\sqrt {c+d x^2} \sqrt {e+f x^2}} \, dx}{f}+\frac {(d (2 b e-a f)) \int \frac {x^2}{\sqrt {c+d x^2} \sqrt {e+f x^2}} \, dx}{e f}\\ &=-\frac {(b e-a f) x \sqrt {c+d x^2}}{e f \sqrt {e+f x^2}}+\frac {(2 b e-a f) x \sqrt {c+d x^2}}{e f \sqrt {e+f x^2}}+\frac {b \sqrt {e} \sqrt {c+d x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{f^{3/2} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt {e+f x^2}}-\frac {(2 b e-a f) \int \frac {\sqrt {c+d x^2}}{\left (e+f x^2\right )^{3/2}} \, dx}{f}\\ &=-\frac {(b e-a f) x \sqrt {c+d x^2}}{e f \sqrt {e+f x^2}}+\frac {(2 b e-a f) x \sqrt {c+d x^2}}{e f \sqrt {e+f x^2}}-\frac {(2 b e-a f) \sqrt {c+d x^2} E\left (\tan ^{-1}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{\sqrt {e} f^{3/2} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt {e+f x^2}}+\frac {b \sqrt {e} \sqrt {c+d x^2} F\left (\tan ^{-1}\left (\frac {\sqrt {f} x}{\sqrt {e}}\right )|1-\frac {d e}{c f}\right )}{f^{3/2} \sqrt {\frac {e \left (c+d x^2\right )}{c \left (e+f x^2\right )}} \sqrt {e+f x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.41, size = 208, normalized size = 0.81 \[ \frac {f x \sqrt {\frac {d}{c}} \left (c+d x^2\right ) (a f-b e)-i e \sqrt {\frac {d x^2}{c}+1} \sqrt {\frac {f x^2}{e}+1} (a d f+b c f-2 b d e) F\left (i \sinh ^{-1}\left (\sqrt {\frac {d}{c}} x\right )|\frac {c f}{d e}\right )-i d e \sqrt {\frac {d x^2}{c}+1} \sqrt {\frac {f x^2}{e}+1} (2 b e-a f) E\left (i \sinh ^{-1}\left (\sqrt {\frac {d}{c}} x\right )|\frac {c f}{d e}\right )}{e f^2 \sqrt {\frac {d}{c}} \sqrt {c+d x^2} \sqrt {e+f x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[((a + b*x^2)*Sqrt[c + d*x^2])/(e + f*x^2)^(3/2),x]

[Out]

(Sqrt[d/c]*f*(-(b*e) + a*f)*x*(c + d*x^2) - I*d*e*(2*b*e - a*f)*Sqrt[1 + (d*x^2)/c]*Sqrt[1 + (f*x^2)/e]*Ellipt
icE[I*ArcSinh[Sqrt[d/c]*x], (c*f)/(d*e)] - I*e*(-2*b*d*e + b*c*f + a*d*f)*Sqrt[1 + (d*x^2)/c]*Sqrt[1 + (f*x^2)
/e]*EllipticF[I*ArcSinh[Sqrt[d/c]*x], (c*f)/(d*e)])/(Sqrt[d/c]*e*f^2*Sqrt[c + d*x^2]*Sqrt[e + f*x^2])

________________________________________________________________________________________

fricas [F]  time = 0.87, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\frac {{\left (b x^{2} + a\right )} \sqrt {d x^{2} + c} \sqrt {f x^{2} + e}}{f^{2} x^{4} + 2 \, e f x^{2} + e^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)*(d*x^2+c)^(1/2)/(f*x^2+e)^(3/2),x, algorithm="fricas")

[Out]

integral((b*x^2 + a)*sqrt(d*x^2 + c)*sqrt(f*x^2 + e)/(f^2*x^4 + 2*e*f*x^2 + e^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b x^{2} + a\right )} \sqrt {d x^{2} + c}}{{\left (f x^{2} + e\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)*(d*x^2+c)^(1/2)/(f*x^2+e)^(3/2),x, algorithm="giac")

[Out]

integrate((b*x^2 + a)*sqrt(d*x^2 + c)/(f*x^2 + e)^(3/2), x)

________________________________________________________________________________________

maple [A]  time = 0.03, size = 393, normalized size = 1.52 \[ \frac {\sqrt {d \,x^{2}+c}\, \sqrt {f \,x^{2}+e}\, \left (\sqrt {-\frac {d}{c}}\, a d \,f^{2} x^{3}-\sqrt {-\frac {d}{c}}\, b d e f \,x^{3}+\sqrt {-\frac {d}{c}}\, a c \,f^{2} x -\sqrt {\frac {d \,x^{2}+c}{c}}\, \sqrt {\frac {f \,x^{2}+e}{e}}\, a d e f \EllipticE \left (\sqrt {-\frac {d}{c}}\, x , \sqrt {\frac {c f}{d e}}\right )+\sqrt {\frac {d \,x^{2}+c}{c}}\, \sqrt {\frac {f \,x^{2}+e}{e}}\, a d e f \EllipticF \left (\sqrt {-\frac {d}{c}}\, x , \sqrt {\frac {c f}{d e}}\right )-\sqrt {-\frac {d}{c}}\, b c e f x +\sqrt {\frac {d \,x^{2}+c}{c}}\, \sqrt {\frac {f \,x^{2}+e}{e}}\, b c e f \EllipticF \left (\sqrt {-\frac {d}{c}}\, x , \sqrt {\frac {c f}{d e}}\right )+2 \sqrt {\frac {d \,x^{2}+c}{c}}\, \sqrt {\frac {f \,x^{2}+e}{e}}\, b d \,e^{2} \EllipticE \left (\sqrt {-\frac {d}{c}}\, x , \sqrt {\frac {c f}{d e}}\right )-2 \sqrt {\frac {d \,x^{2}+c}{c}}\, \sqrt {\frac {f \,x^{2}+e}{e}}\, b d \,e^{2} \EllipticF \left (\sqrt {-\frac {d}{c}}\, x , \sqrt {\frac {c f}{d e}}\right )\right )}{\left (d f \,x^{4}+c f \,x^{2}+d e \,x^{2}+c e \right ) \sqrt {-\frac {d}{c}}\, e \,f^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)*(d*x^2+c)^(1/2)/(f*x^2+e)^(3/2),x)

[Out]

(d*x^2+c)^(1/2)*(f*x^2+e)^(1/2)*(x^3*a*d*f^2*(-1/c*d)^(1/2)-(-1/c*d)^(1/2)*b*d*e*f*x^3+((d*x^2+c)/c)^(1/2)*((f
*x^2+e)/e)^(1/2)*EllipticF((-1/c*d)^(1/2)*x,(c/d/e*f)^(1/2))*a*d*e*f+((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)*E
llipticF((-1/c*d)^(1/2)*x,(c/d/e*f)^(1/2))*b*c*e*f-2*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)*EllipticF((-1/c*d
)^(1/2)*x,(c/d/e*f)^(1/2))*b*d*e^2-((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)*EllipticE((-1/c*d)^(1/2)*x,(c/d/e*f
)^(1/2))*a*d*e*f+2*((d*x^2+c)/c)^(1/2)*((f*x^2+e)/e)^(1/2)*EllipticE((-1/c*d)^(1/2)*x,(c/d/e*f)^(1/2))*b*d*e^2
+x*a*c*f^2*(-1/c*d)^(1/2)-(-1/c*d)^(1/2)*b*c*e*f*x)/(d*f*x^4+c*f*x^2+d*e*x^2+c*e)/f^2/e/(-1/c*d)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (b x^{2} + a\right )} \sqrt {d x^{2} + c}}{{\left (f x^{2} + e\right )}^{\frac {3}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)*(d*x^2+c)^(1/2)/(f*x^2+e)^(3/2),x, algorithm="maxima")

[Out]

integrate((b*x^2 + a)*sqrt(d*x^2 + c)/(f*x^2 + e)^(3/2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {\left (b\,x^2+a\right )\,\sqrt {d\,x^2+c}}{{\left (f\,x^2+e\right )}^{3/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((a + b*x^2)*(c + d*x^2)^(1/2))/(e + f*x^2)^(3/2),x)

[Out]

int(((a + b*x^2)*(c + d*x^2)^(1/2))/(e + f*x^2)^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\left (a + b x^{2}\right ) \sqrt {c + d x^{2}}}{\left (e + f x^{2}\right )^{\frac {3}{2}}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)*(d*x**2+c)**(1/2)/(f*x**2+e)**(3/2),x)

[Out]

Integral((a + b*x**2)*sqrt(c + d*x**2)/(e + f*x**2)**(3/2), x)

________________________________________________________________________________________